|
Взрывы островных вселенных
Когда знакомишься с открытиями последних десятилетий в астрономии, можно перестать удивляться чему-либо. Взять хотя бы открытие гигантских взрывов в солнечной атмосфере. Но и они бледнеют перед взрывами на вспыхивающих звездах типа UV Кита. А что сказать о взрывах в новых звездах, наконец, о взрывах в сверхновых звездах? И вот мы подошли к рассказу о взрывах в островных вселенных!
У большой и красивой спиральной галактики в Большой Медведице, M 81, есть спутник. Это невзрачная продолговатая туманность M 82, имеющая как бы «рваные» края. Она не привлекала к себе внимания, хотя и отличается от обычных неправильных галактик тем, что содержит много пыли и в то же время не содержит горячих, голубых гигантов, хотя ее спектр класса A. M 82 и явилась прототипом неправильных галактик Ir II. В последние полтора десятилетия она стала самой «модной» галактикой. Знаменитостью ее сделали исследования Сандейджа и Линдса (1963 г.).
На снимках M 82, сделанных в лучах красной водородной линии Hα, четко выступили длинные Волошина водорода, идущие в обе стороны от центра. Они тянутся перпендикулярно к плоскости галактики, которая образует малый угол с лучом зрения и оттого выглядит продолговатой. Оказалось, что газ этих волокон имеет тем большую скорость, чем он дальше от центра. Кроме красных водородных волокон, видны и голубоватые волокна, дающие непрерывный спектр, и их свет поляризован. Очевидно, это потоки быстрых электронов, дающие синхротронное свечение и в видимых лучах и излучение в радиодиапазоне. Они же при столкновении с атомами водорода ионизуют его. Потоки газа к полюсам этой вращающейся галактики, а не в ее плоскости, обусловлены тем, что они встретили в ней сопротивление спокойных газов, имевшихся там уже ранее. Там газ перемешан с поглощающей свет пылью, которую вы видите. Кинетическая энергия разлетающегося газа в M 82 составляет около 2·1055 эрг, а ее излучение за истекшие полтора миллиона лет составляет почти 1056 эрг. Это в миллион раз больше, чем энергия, выделяемая при вспышке сверхновой звезды, — самого мощного взрыва, известного ранее. К настоящему времени выброшенный газ распространился на 10000 световых лет от центра. Затем он выйдет за границы галактики. Запасенная газом и электронами энергия израсходуется, плотность их упадет, они рассеются, и следов взрыва уже не будет видно. Взрыв и сопровождающее его радиоизлучение — явление скоротечное в сравнении с возрастом галактик, оцениваемым примерно в 10 млрд. лет.
В течение 15 лет, после исследования M 82 Сандейджем и Линдсом, стало очень популярно толкование наблюденных данных как последствия центрального взрыва в ней, хотя и оставалось неясным, что же, собственно говоря, взорвалось. M 82 называли «взрывающейся галактикой» и гипотезы, в которых проводилась аналогия со взрывами атомной бомбы, были модны. Везде стали усматривать «волны звездообразования». Видимо, попав в общее русло, некоторые ученые, не конкретизируя гипотезу, предлагают считать M 82 не взрывавшейся, а находящейся в состоянии активного образования в ней звезд и горячего газа вследствие взаимодействия ее со спиральной галактикой M 81.
Еще до исследования M 82 предполагали, что двойные источники радиоизлучения, между компонентами которых находится видимая галактика, образованы взрывами. В галактике происходит взрыв, выбрасывающий два огромных облака газа, начиненных релятивистскими электронами, как губка водой. По закону сохранения количества движения скорости облаков противоположны, а старый газ, находящийся в плоскости галактики, заставляет их двигаться к полюсам вращения. После выхода из галактики облаков, радиоизлучающих синхротронно, мы и видим два обширных радиоисточника по обе стороны от породившей их галактики. В радиогалактиках выход энергии еще грандиознее чем в M 82. За период пребывания системы Лебедь А в стадии радиогалактики, оцениваемый в миллион лет, излучается 3·1058 эрг. Это энергия синхротронного излучения; вместе с кинетической, вместе с потерями энергии при ее переходе в кинетическую и т. д. энергия взрыва в системе Лебедь А была, вероятно, 1090—1061 эрг. Она равна энергии превращения в гелий водорода с массой в миллиард солнечных масс. Колоссальность этого почти мгновенного освобождения энергии и неизвестность физического механизма ее источника — все это и является главной загадкой происхождения и радиогалактик, и квазаров, энергии которых одинаковы.
На сходство спектров галактик Сейферта и некоторых радиогалактик автор этой книги указывал еще в 1956 г. Теперь на это сходство обращено еще большее внимание. Оказалось, что бурное истечение горячих газов из ядер галактик Сейферта имеет взрывное происхождение. Ядра их звездообразны, т. е. очень малы. Более того, в центре некоторых галактик Сейферта обнаружены точечные источники радиоизлучения. Поэтому говорят, что в центре их находится подобие маленького квазара. Квазары — это как бы мощные взорвавшиеся ядра галактик Сейферта, но без окружающей их звездной галактики.
Особенную трудность представляет собой объяснение квазаров. К трудности найти для них нужные чудовищные источники энергии, механизмы ее освобождения и превращения в энергию релятивистских электронов и энергию их суммарного движения присоединяется трудность объяснения их малых размеров. Дело в том, что они не могут быть звездными системами. Большое собрание звезд не может испытывать те быстрые колебания суммарного блеска и радиоизлучения, какие наблюдаются. Это должно быть одно огромное тело. Вначале высказывалась гипотеза, что в большом облаке газа с массой около 108 масс Солнца происходит под действием тяготения катастрофическое сжатие, так называемый коллапс. Образуется сверхзвезда. Сжатие освобождает колоссальное количество гравитационной энергии. Но как она может перейти в энергию релятивистских электронов, неизвестно. Вначале квазары согласно этой гипотезе поторопились назвать сверхзвездами. Однако эта гипотеза не получила широкого признания, и для объяснения квазаров было выдвинуто около десятка разных гипотез, которые сейчас обсуждаются. Среди них есть группа гипотез, пытающихся рассматривать квазары как более близкие к нам объекты, а красное смещение в их спектрах объяснять иначе, чем эффектом их дальности от нас. Едва ли эти попытки будут иметь успех. Мы не имеем возможности перечислять, а тем более разбирать многочисленные гипотезы о квазарах, из которых ни одна не получила признания. Быстрое накопление фактических данных ускорит нахождение правильного объяснения их.
Заметим, что большинство ученых придерживается убеждения, что звезды и галактики возникают путем конденсации разреженного газа. Говоря о взрывах в галактиках, обычно не высказывают мнения о том, что же, собственно говоря, взрывается.
Более последовательную точку зрения занимает В.А. Амбарцумян, развивающий гипотезу, что вообще и звезды, и газ возникают при взрывах из сверхплотного вещества. Он считает, что в ядрах некоторых галактик существует занимающая малый объем огромная масса сверхплотного вещества, способного взрывоподобно делиться и образовывать пары и группы разбегающихся галактик. Мелкие выбросы образуют галактики-спутники. Радиогалактики, а может быть, и квазары, он рассматривает как галактики, ядра которых находятся в процессе катастрофического деления. Мы уже говорили, что найдено немало подтверждений тому, что многие группы галактик и даже скопления их распадаются, хотя неизвестно, откуда может взяться нужная для этого колоссальная энергия. Но этот же вопрос остается в силе относительно позднее открытых радиогалактик и квазаров. Как говорится: «невероятно, но факт». Правда, пока еще в ядрах галактик не обнаружено очень больших и крайне плотных масс, но теперь эта возможность представляется менее невероятной, чем казалось раньше. В связи с этими своими представлениями Амбарцумян первый обратил всеобщее внимание на активность ядер галактик и на их большую эволюционную роль. Теперь тезис об огромной активности ядер галактик приобрел общее признание. Еще в самом начале Амбарцумян обращал внимание на выброс из центральной части радиогалактики M 87 (аналогичные выбросы наблюдаются и в некоторых других галактиках). Излучение этого выброса оказалось синхротронным в оптической части спектра и связанным с радиоизлучением. Ядра галактик, их радиоизлучение и другие явления нестационарности изучают в Бюраканской обсерватории.
|