|
Наблюдение невидимого и анатомия Солнца
Астрономы — такой народ, что они не только узнают всю подноготную там, где непосвященное око видит только мерцающую точку, но и умудряются наблюдать невидимое. Одним из многочисленных примеров этого является наблюдение ими магнитности пятен и распределения спектрального излучения химических элементов на разной высоте над фотосферой.
Линии спектра источника света в магнитном поле меняются. Они расщепляются, каждая на несколько линий, причем свет каждой из них особым образом поляризован. Не вдаваясь в длинное описание явлений поляризации, скажем лишь, что поляризованный свет можно отличить от обычного особыми способами, разработанными физиками. Расстояние между линиями спектра, на которые первоначальная линия расщепляется в магнитном поле, растет с напряжением магнитного поля. Это явление хорошо изучено в лабораториях. Темные линии в спектре солнечных пятен обнаруживают подобное же расщепление, из чего следует, что в области солнечного пятна существует магнитное поле, напряжение которого доходит иногда до 8000 гаусс. Это — весьма сильное поле, хотя в лабораториях электромагниты могут давать еще более мощное поле.
Рис. 124. Изменение магнитной полярности солнечных пятен.
Кто не знает, что у всякого магнита есть всегда два полюса — северный и южный? На магнитах, имеющих форму бруска или подковы, их красят обычно в разный цвет — красный и синий. Вот тут-то и оказалась любопытная вещь: солнечные пятна чаще всего появляются парами, и тогда магнетизм одного пятна северный, другого — южный.
Два пятна в паре — как бы два конца магнитной подковы, спрятанной под поверхностью Солнца и высовывающейся сквозь нее этими концами. Мало того, во всех парах пятен одного полушария Солнца переднее пятно (в сторону вращения Солнца) имеет всегда один и тот же магнетизм (скажем, южный), в другом же полушарии Солнца магнетизм каждого переднего пятна противоположный (северный). Это длится 11 лет, и когда начинается новый цикл солнечных пятен, то магнетизм пятен северного и южного полушарий Солнца меняется местами.
В 1958 г. Бэбкок (США) заключил, что общее, хотя и слабое магнитное поле Солнца меняет свое направление. Так, если северный магнитный полюс в течение 11-летнего цикла был в северном полушарии Солнца, то в следующем цикле он оказывается уже в южном полушарии. Почему это происходит — еще не ясно, но силовые линии общего поля Солнца входят в другую полярную область. Силовые линии замыкаются, проходя и внутри Солнца, не очень глубоко под фотосферой.
Мы видим Солнце и все подробности его поверхности в совокупности лучей разных длин волн. Поверхность Солнца излучает непрерывный спектр. Но лежащие над ней более холодные и разреженные слои благодаря процессам рассеяния, описанным в первой главе, вызывают появление в спектре Солнца темных линий, носящих имя немецкого ученого Фраунгофера, который первый их изучил. Мы уже говорили, что темные линии спектра не бывают абсолютно черными, некоторая доля света в них все же есть. Эта доля много меньше количества света, посылаемого непрерывным спектром в той же длине волны, и еще во много раз меньше суммарного света, заключенного в непрерывном спектре.
Если бы наш глаз потерял чувствительность ко всем длинам волн, кроме одной из длин волн, соответствующей одной из линий спектра определенного химического элемента, скажем, водорода, то мы увидели бы Солнце совсем иным, чем видим его сейчас. В тех местах, где над поверхностью Солнца много более холодного водорода поглощение света в нашей длине волны оказалось бы особенно сильным. Там мы видели бы темное пятно. Где же над поверхностью Солнца окажутся более горячие водородные газы, там излучение света в нашей длине волны будет сильнее, чем в соседних местах, и там мы увидим светлое пятно. Таким образом, мы получили бы возможность сразу увидеть распределение над поверхностью Солнца горячих и холодных водородных масс.
Именно такую возможность видеть Солнце «в свете длины волны водородной линии» дает нам прибор спектрогелиоскопу изобретенный Хэйлом в США в 1930 г. Спектрогелиоскоп можно представить себе как спектроскоп, в котором весь спектр загорожен ширмой со щелью F2, через которую проходит свет только одной желаемой «темной» спектральной линии.
Рис. 125. Схема устройства спектрогелиографа. S — зеркало, O1 и O2 — объективы.
За этой щелью находится окуляр, в который смотрит наблюдатель. Ему в глаза попадает свет только с длиной волны линии, выделенной щелью в ширме. На щель спектроскопа F1 падает изображение Солнца, даваемое телескопом и приводимое особым приспособлением в быстрое колебательное движение поперек щели. Картины быстро сменяющихся узких полосок, вырезаемых щелью спектроскопа из изображения Солнца, прикладываясь друг к другу, создают благодаря сохранению зрительного ощущения впечатление полной картины солнечного диска. Выделяя щелью ширмы разные линии в спектре, можно изучать распределение над поверхностью Солнца разных газов: водорода, гелия, натрия, кальция и других.
С помощью прибора несколько иной конструкции, называемого спектрогелиографом и изобретенного раньше спектрогелиоскопа Деландром во Франции и тем же Хэйлом в США, подобные изображения Солнца можно фотографировать. Место глаза за щелью F2 там занимает движущаяся фотографическая пластинка P. Такие фотографии называются спектрогелиограммами.
Теория показывает, что в темных линиях спектра, имеющих фактически некоторую ширину (а вовсе не бесконечно узких), центр линии образован поглощением газов, находящихся на большей высоте над поверхностью Солнца, чем газы, производящие поглощение света у краев линий. Так, выделяя очень узкой щелью разные части широких темных линий спектра Солнца, можно делать как бы срезы газовых слоев на разной высоте над фотосферой. Это — форменная анатомия внешних частей Солнца.
На спектрогелиограммах отчетливо проявляется не видимая в обычный телескоп структура водородных масс в области пятен, о чем говорилось выше. Кроме того, пятна, как правило, бывают окружены яркими облаками горячего водорода и кальция (флоккулами). Флоккулы — это верхние части областей, занятых факелами. Это сопровождение областей похолодания на Солнце облаками горячих газов и вызывает то, что в годы максимума площади, занятой холодными пятнами, общее излучение Солнца, по-видимому, не понижается. Изучение спектрогелиограмм в связи с измерениями скоростей движения газов в разных местах Солнца показывает сложную циркуляцию газов в пятнах.
В нижней части пятна газ течет горизонтально от центра к периферии, а в более высоких слоях газы втекают сверху и сбоку внутрь пятна. Скорости достигают 10 км/с. Однако пятна — спокойные образования, где конвекция подавлена сильным магнитным полем. Вокруг же пятна, в области флоккул, магнитное поле слабо и усиливает конвекцию ионизованного газа, называемого плазмой.
Рис. 126. Спектрогеолиограмма Солнца в лучах водорода. Видны светлые флоккулы вокруг пятен и темные волокна. Внизу — обычная фотография Солнца.
Солнечные газы охвачены непрерывной и мощной циркуляцией, законы которой для нас все еще гораздо «темнее», чем сами пятна.
|