Материалы по истории астрономии

На правах рекламы:

Модульные кухни от производителя модульные кухни производителя цены xorekmebel.ru.

Рождение телескопа

Тысячи лет астрономы изучали Вселенную без телескопа. Хотя стекло было известно египтянам еще в 3800 до н. э., да и финикийцы славились как стеклоделы, оптические свойства стекла были полностью оценены лишь в эпоху Средневековья. В XIII в. Роджер Бэкон одним из первых начал изучать свойства линз и зеркал. Очки появились в Италии около 1300 г., а к началу XVI в. оптические центры возникли в Германии и Голландии. Первая зрительная труба была сделана в Голландии в 1608 г., но трудно сказать, кем именно. Возможно, ее создали независимо друг от друга мастера очковых стекол Ганс Липперсгей, Яков Мециус и Захария Янсен. Кажется, Липперсгей был первым, кто для увеличения удаленных объектов применил комбинацию линз — положительную в качестве объектива и отрицательную как окуляр. Такая комбинация до сих пор используется в самых простых — театральных и детских — биноклях. Весной 1609 г. о голландском изобретении узнал в Италии Галилей и, не имея детального описания, сам за несколько недель разработал конструкцию и построил то, что теперь мы называем телескопом. Направив инструмент на небо, Галилей открыл новую эру в наблюдательной астрономии, о которой не мечтали его предшественники и которая продолжается до наших дней.

Галилей сделал много телескопов с диаметром объектива до 6 см, фокусным расстоянием до 170 см и увеличением до 35 раз. Они были устроены по одной схеме: объектив — плосковыпуклая или двояковыпуклая линза, окуляр — плосковогнутая или двояковогнутая. Изображение в таком телескопе прямое и довольно яркое, но поле зрения маленькое. Как все конструкции с простым объективом, телескоп Галилея страдал сильной сферической и очень сильной хроматической аберрацией.

Сферическая аберрация возникает потому, что у линзы со сферическими поверхностями разные радиальные зоны имеют различное фокусное расстояние. Поэтому лучи, прошедшие вблизи центра и вблизи края линзы, собираются в разных точках и нигде не дают резкого изображения. Хроматическая аберрация возникает из-за того, что стекло имеет разный коэффициент преломления для лучей разного цвета, из-за чего простая линза не может собрать все лучи в одну точку: если в лучах одного цвета изображение звезды сфокусировано в точку, то вокруг нее виден расплывчатый ободок, образованный лучами других цветов. Сам Галилей боролся с этими недостатками линз, закрывая их внешнюю часть диафрагмой. Например, на одном из сохранившихся его телескопов (рис. 3.3) объектив диаметром 5,1 см задиафрагмирован до 2,6 см, а окуляр диаметром 2,6 см — до 1,1 см. Второй телескоп на рис. 3.3 имеет объектив 3,7 см, задиафрагмированный до 1,6 см. Этот прием частично помогал: изображение становилось более четким, но его яркость значительно снижалась.

После Галилея многие работали над усовершенствованием телескопа. В 1611 г. Иоганн Кеплер теоретически обосновал новую конструкцию, в которой окуляром служит положительная линза. Такой телескоп дает перевернутое изображение, но имеет значительно большее поле зрения. Впервые телескоп системы Кеплера изготовил иезуит Христоф Шейнер в 1613 г. Вскоре среди астрономов кеплерова труба полностью вытеснила «голландскую» (галилееву), поскольку перевернутое изображение не доставляло им хлопот. Но для морских подзорных труб и биноклей голландская схема использовалась еще долго, вплоть до изобретения призменного бинокля.

Исследуя сферическую аберрацию, Кеплер теоретически обнаружил, что ее можно устранить, придав линзам форму гиперболоидов. В 1637 г. Рене Декарт предложил для телескопов делать линзы с гиперболическими поверхностями, но попытки изготовить их оказались безуспешными. Марен Мерсенн в 1636 г. развил идею создания телескопа из двух параболических зеркал, высказанную иезуитом Николло Цукки двадцатью годами ранее. Но и эту идею не удалось тогда осуществить из-за сложности изготовления параболических поверхностей. Первый телескоп с отражательными поверхностями — рефлектор — был создан лишь три десятилетия спустя. А тем временем линзовый телескоп — рефрактор — продолжал совершенствоваться.

В середине XVII в. стало ясно, что сферическая и хроматическая аберрация значительно ослабевает при увеличении фокусного расстояния объектива. Ян Гевелий из Гданьска и братья Христиан и Константин Гюйгенсы одними из первых стали строить длинные телескопы. Крупнейший телескоп Гевелия имел объектив диаметром 12 см с фокусным расстоянием 45 м и на сложной системе тросов и блоков подвешивался на 27-метровой мачте. Христиан Гюйгенс укреплял объектив на небольшой платформе, скользящей вверх и вниз по мачте, а окуляр — отдельно на небольшой подставке, которую можно было переносить в поисках фокуса. Такой телескоп называли «воздушным», поскольку он не имел трубы.

Длина телескопов Гюйгенса в 1686 г. достигала 210 футов (64 м), а диаметр объективов — 22 см. Правда, свои знаменитые астрономические открытия — кольца Сатурна и его крупнейший спутник Титан, полярные шапки Марса и его вращение, межзвездные туманности и Др. — Гюйгенс открыл за 30 лет до этого с помощью скромного 12-футового телескопа с объективом 5 см.

Итак, в XVII—XVIII вв. пользовались длинными рефракторами с фокусными расстояниями в десятки метров. Это было очень неудобно. Роберт Гук придумал, как укоротить телескоп с помощью нескольких плоских зеркал, но выяснилось, что сделать хорошее плоское зеркало не так-то легко, и от идеи отказались.

Около 1663 г. Исаак Ньютон начал свои знаменитые опыты по отражению и преломлению света, в ходе которых он ясно понял различие между сферической и хроматической аберрацией. Однако он ошибочно полагал, что все вещества обладают одинаковой силой преломления, из чего заключил, что невозможно сделать линзовую систему, свободную от хроматической аберрации. (На самом деле — можно, если использовать линзы из разных сортов стекла.) Сделав такой вывод, Ньютон обратился к зеркальным системам, поскольку лучи любого цвета отражаются от зеркала одинаково. Вообще говоря, зеркальные телескопы предлагались и до Ньютона. Я уже упоминал об идеях Цукки и Мерсенна. Около 1664 г. Джеймс Грегори предложил телескоп с главным параболическим зеркалом и вспомогательным эллиптическим.

Эта схема была свободна не только от хроматической, но и от сферической аберрации. Однако изготовить столь сложные зеркальные поверхности Грегори не смог.

Ньютон разработал методы шлифовки и полировки сложных зеркал. В 1668 г. он построил первый телескоп-рефлектор длиной всего 16 см с параболическим зеркалом диаметром 3,1 см. Упростив схему Грегори, он с помощью маленького плоского зеркала вывел фокус главного зеркала наружу сквозь отверстие в трубе телескопа. Такая конструкция тоже свободна от сферической аберрации. Ньютон делал зеркала из оптической бронзы или спекулума — сплава меди с оловом, имевшего блеск, сравнимый с блеском серебра. К сожалению, этот сплав из-за присутствия меди быстро тускнеет и требует переполировки. Но его использовали для астрономических зеркал вплоть до 1850 г., когда изобрели метод серебрения стекла.

Таблица 3.1. Открытия спутников планет в XVII—XIX вв.

Автор открытия Год Планета Спутник Блеск Радиус, км
Галилео Галилей,
Симон Марий
1610 Юпитер Ио
Европа
Ганимед
Каллисто
5,0m
5,3
4,6
5,7
1822
1561
2634
2410
Христиан Гюйгенс 1655 Титан 8,3 2 575
Джованни Кассини 1671
1672

1684

Сатурн Япет
Рея
Тефия
Диона
10—12
9,7
10,2
10,4
736
764
533
562
Вильям Гершель 1787

1789

Уран

Сатурн

Титания Оберон

Мимас Энцелад

13,9
14,1
12,9
11,7
788
761
198
252
Уильям Ласселл 1846 Нептун Тритон 13,5 1353
У. и Дж. Бонд, У. Ласселл 1848 Сатурн Гиперион 14,4 135
Уильям Ласселл 1851 Уран Ариэль Умбриэль 13,7
14,5
579
585
Асаф Холл 1877 Марс Фобос
Деймос
11,3
12,4
11
6
Эдуард Барнард 1892 Юпитер Амальтея 14,1 83
Уильям Пикеринг 1899 Сатурн Феба 16,5 107

Рефлектор иной системы, также свободной от сферической аберрации, предложил в 1672 г. француз Гийом Н. Кассегрен, о котором мало что известно. И хотя Ньютон резко критиковал эту конструкцию, она широко используется до сих пор. Главное зеркало в ней параболическое, а вторичное зеркало выпуклое гиперболическое. Свет выходит сквозь центральное отверстие в главном зеркале.

Для XVIII в. характерен быстрый прогресс в изготовлении рефлекторов. Английский оптик Джон Хэдли (Гадлей, 1682—1744) первым использовал оптический метод контроля формы зеркала. Шотландский оптик и астроном Джеймс Шорт (1710—1768) построил множество прекрасных телескопов по схеме Грегори. А Вильям Гершель с помощниками создал в 1789 г. крупнейший по тем временам телескоп с зеркалом диаметром 126 см и фокусным расстоянием 12 м; с этим «Великим 40-футовым» мы уже познакомились в главе 2. Заметим, что в нем впервые было реализовано наблюдение в главном фокусе, смещенном к краю апертуры (система Ломоносова — Гершеля). После изобретения фотографии наблюдение в главном фокусе стало нормой.

Но и до появления фотопластинки большие рефлекторы уверенно демонстрировали свое главное преимущество — высокую проницающую способность, то есть позволяли замечать тусклые объекты. Вильям Гершель с помощью своего любимого «Большого 20-футового» диаметром 18 дюймов в 1787 г. открыл спутники Урана — Титанию и Оберон, имеющие блеск около 14m. До этого астрономы замечали спутники с блеском не слабее 11m, и вдруг — скачок сразу на три звездные величины (табл. 3.1). Результат Гершеля немного улучшил другой любитель астрономии — английский пивовар Уильям Ласселл (1799—1880), построивший близ Ливерпуля рефлектор диаметром 24 дюйма. И это было вполне закономерно: используя зеркало почти вдвое большей площади, он и продвинутся к вдвое более тусклым объектам. При этом Ласселл повторил рекорды Галилея, Кассини и Гершеля — открыл 4 спутника (он обнаружил Гиперион независимо от американских астрономов отца и сына Бондов). Любопытно, что вслед за Гершелем и лордом Россом Ласселл в 1855 г. тоже построил огромный 48-дюймовый рефлектор. Понимая, что Англия — не лучшее место для астрономических наблюдений, Ласселл установил свой гигантский инструмент в прекрасном районе — на острове Мальта. Однако, как и его предшественники, он не обнаружил новых спутников. Для этого требовался новый технологический рывок.

Фактически прорыв Гершеля не был превзойден в течение столетия. Лишь в самом конце XIX в. американский астроном Уильям Пикеринг смог продвинуться еще на две звездных величины, обнаружив спутник Сатурна Фебу, но дело тут было не в качестве телескопа: Феба стала первым спутником, открытым с помощью фотографии. Вообще говоря, этот факт обескураживает: фотоэмульсия обладает неоспоримым преимуществом перед нашим зрением: она может долго накапливать свет тусклых звезд. Почему же в течение полувека развития фотографии глаз выдерживал конкуренцию с фотокамерой?

Предыдущая страница К оглавлению Следующая страница

«Кабинетъ» — История астрономии. Все права на тексты книг принадлежат их авторам!
При копировании материалов проекта обязательно ставить ссылку