Материалы по истории астрономии

Соседи Солнца

Мы должны будем изменить свое мнение о Солнце, если рассмотрим ближайшие звезды.

Под ближайшими будем понимать те, которые находятся внутри сферы радиусом 16 световых лет, описанной вокруг Солнца. Помимо Солнца, в этом объеме к настоящему времени обнаружено около 50 звезд. Изучая эти звезды, мы получим понятие и о плотности звездного населения и о том, какие типы звезд преобладают. Ведь звезды с очень малой светимостью на больших расстояниях невидимы, но по соседству с нами мы можем рассчитывать их заметить. Тыкву в огороде вы ведь заметите и издалека, а маленький огурец не всегда увидите и под ногами.

За последнее время вылавливанию близких звезд из всего множества их помогло следующее соображение. Ввиду чудовищного разнообразия в светимости звезд их видимый блеск является ненадежным признаком их расстояния, в то время как видимое угловое перемещение их на небе дает более верное указание на степень их близости. Скорости звезд в пространстве тоже весьма разнообразны, но естественно ожидать, что, в общем, чем больше смещается за год по небесной сфере звезда, тем она к нам ближе, потому что при одинаковом движении в пространстве видимое угловое перемещение растет с уменьшением расстояния.

Практика показала, что, пользуясь этим признаком, мы действительно вылавливаем много близких к нам звезд.

Среди этих звезд только четыре около 1-й звездной величины: Сириус, Альтаир, Процион и а Центавра. Еще шесть кое-как видны невооруженным глазом и то лишь в безлунную ночь. Все же остальные звезды видны только в телескоп.

Таким образом, из двух десятков наиболее ярких звезд четыре (20%) оказываются ближайшими, а из 2000000 звезд от 9-й до 12-й видимой звездной величины ближайшими являются только 20, или 0,001%! Эти звезды малого блеска составляют большинство среди близких звезд, а так как таких слабых звезд вообще на небе чрезвычайно много, то неудивительно, что надо было затратить много времени, чтобы выловить их из этой гущи. Около половины их выловлено за последние сорок лет.

На рис. 153 изображено распределение абсолютных величин и спектральных классов ближайших звезд. Это диаграмма «спектр — светимость». На ней все звезды располагаются примерно вдоль диагонали. Это — крайне любопытный факт, значение которого мы скоро выясним.

Из всего количества ближайших к нам звезд 12 на самом деле кратные (10 двойных и 2 тройные). Одиночество среди звезд не столь распространено, как думали после первых открытий двойных звезд. Далеко не все звезды живут бобылями, как наше Солнце (если, конечно, не иметь в виду планеты). Новейшие открытия прибавляют к списку соседей Солнца только звезды малой светимости. Мы похожи на рыбаков, выудивших сначала крупную рыбу и принявшихся затем за мелочь. Однако прибавление с течением времени новых звезд к нашему графику убеждает нас в том, что внутри принятых границ пространства мы уже выловили не меньше половины всех существующих там звезд. Если бы в этой области было еще много не открытых звезд, то их существование сказалось бы на скоростях движения тех звезд, которые мы уже знаем.

Итак, на рассматриваемой нами звездной «жилплощади», вернее, в данной кубатуре, еще не все жильцы учтены, но большинство (во всяком случае не меньше половины) их налицо, и пора сделать выводы о том, в какой же компании находится наше Солнце, какова характерная проба, взятая из этого звездного винегрета, данные о котором мы заимствуем здесь у астронома Бока.

Среди наших соседей нет наиболее горячих звезд класса В, и вообще звезды горячее Солнца составляют уже меньшинство, в противоположность тому, что давал первый список.

Быть может, еще характернее отсутствие здесь гигантов, а тем более сверхгигантов, как с точки зрения светимости, так и размеров. Самыми рядовыми и частыми жильцами в нашей кубатуре являются красные карлики, более холодные и маленькие, чем Солнце, с гораздо более низкой светимостью. Они составляют половину звездного населения.

Белые карлики, подобные спутнику Сириуса, вовсе не исключительные уродцы, как думали было вначале. Уже в нашем небольшом объеме, совсем рядом с Солнцем, мы обнаружили троих, и они присутствуют в равном числе с «нормальными» белый звездами, такими, как Сириус и Процион.

Если еще учесть трудность открытия белых карликов, то надо думать, что среди не открытых еще соседей, кроме красных карликов, можно рассчитывать найти также и белые карлики. Например, до 1935 г. было известно всего лишь три белых карлика (все вблизи Солнца), а уже на следующий год их попалось при определении параллаксов еще восемь штук, все более далекие. Самый яркий по видимому блеску — это спутник Сириуса 7-й звездной величины, многие же другие — около 12-й звездной величины и слабее.

В настоящее время астроном Лейтен отнес к белым карликам уже около 250 звезд. Есть основания предполагать, что белые карлики составляют около 1% от общего числа звезд в единице объема. В 1963 г. Лейтен открыл белые звезды — пигмеи. Самым малым из известных белых и голубых пигмеев является, по-видимому, горячая звезда LP 768-500 в Ките. Она имеет блеск 18m,2. Собственное движение ее огромно: 1″,18 в год, следовательно, звезда должна быть довольно близка к нам, Если принять расстояние до нее в 48 световых лет, то она будет в 100000 раз слабее и в 160 раз меньше, чем белые карлики типа спутника Сириуса. Ее диаметр будет в 100 раз меньше солнечного, т. е. такой же как у Земли! В ее спектре не видно никаких линий.

Для белого пигмея LP 357-186 Лейтен допускал даже размер вдвое меньший, чем размер нашей Луны и плотность порядка 200 млн. г/см³. Впрочем, незнание точного расстояния дает только порядок всех этих величин.

Особенно интересно открытие пары пигмеев LP 101-15/16 15m,8 с годичным движением 1″,62. Один член пары — белый пигмей, а другой — красный, холодный, причем половину из многочисленных линий в его спектре отождествить пока еще не удалось. Этот спектр предстоит изучать дальше.

Теоретические соображения В.А. Амбарцумяна, Цвикки и других приводят к выводу о возможности существования звезд, состоящих из нейтронов или из тяжелых элементарных частиц — гиперонов. Не имея электрического заряда, такие частицы могут быть сближены гораздо сильнее, чем ядра и электроны в белых карликах. В результате такие звезды могут иметь диаметр всего лишь в несколько километров и совершенно фантастическую плотность — порядка плотности атомных ядер и даже большую (около 1015 г/см³).

Нейтронные звезды должны, по теории, излучать интенсивные рентгеновские лучи. Хотя в пространстве с высотных ракет такие лучи и обнаружены недавно, но их источником оказываются, по-видимому, не нейтронные звезды, а некоторые другие небесные тела. Словом, существуют ли реально названные выше виды сверхплотных звезд, допускаемых теорией, пока не известно.

Наконец, в теории относительности допускается существование очень массивных тел такой большой плотности, достигнутой вследствие катастрофического спадения (коллапса), что излучение из них не выходит наружу. Такое горячее, представляющееся фантастическим небесное тело нельзя собственно и называть звездой, так как оно совсем не светится. Обнаружить его существование можно было бы только по производимому им притяжению других тел. Подробнее об этом см. в последнем разделе гл. 8.

Предыдущая страница К оглавлению Следующая страница
«Кабинетъ» — История астрономии. Все права на тексты книг принадлежат их авторам!
При копировании материалов проекта обязательно ставить ссылку