Материалы по истории астрономии

Сверхвзрывы сверхновых звезд

Если собрать лучших писателей-фантастов и сказочников всего мира и предложить им выдумать что-либо совершенно невероятное, то, наверное, ни один из них не придумает ничего более невероятного, чем то, что мы сейчас опишем. Но это не фантазия, не сказка, а быль, происходящая на наших глазах. «Чудеса» природа демонстрирует вокруг нас постоянно, мы являемся их свидетелями, но зачастую не понимаем или понимаем лишь гораздо позднее, какое чудо природы было перед нами. Читатели книг по астрономии, может быть, уже привыкли к кажущимся невероятными расстояниям в тысячи световых лет, к планетам, совершенно не похожим на Землю, к компаниям цветных солнц, в тысячи раз более ярких, чем наше. Но не только у них, а и у бывалых астрономов-специалистов начинает кружиться голова, когда они задумываются над тем, о чем сейчас будет речь. Невероятность и в то же время достоверность этих явлений стала нам ясна лишь за последнее время, но свидетелями их были многие люди с давних пор. Был их свидетелем и китайский летописец Мин-Туань-Линь. 4 июля 1054 г. он записал:

«В первый год периода Чи-хо, в пятую Луну, в день Чи-Чу появилась звезда-гостья к юго-востоку от звезды Тиен-Куан и исчезла более чем через год». Собрат же Мин-Туань-Линя записал: «Она была видна днем, как Венера, лучи света исходили из нее во все стороны, и цвет ее был красновато-белый. Так была видна она 23 дня». Подобные скупые записи сделали также японские летописцы и арабские очевидцы. Эти записи были разысканы и прочитаны в 1942 г.

Немало подобных записей, хотя и не о столь ярких звездах-гостьях, т. е., по-видимому, о новых звездах, найдено в старых летописях. Но вот почти через тысячу лет после смерти Мин-Туань-Линя астрономы изучили подробно необычную туманность, видимую в телескоп к юго-востоку от китайской звезды Тиен-Куан. Мы называем ее Дзетой Тельца, а туманность за ее своеобразную форму наблюдатели прозвали Крабовидной. Как краб туманных очертаний в синеватой глубине моря, мерцает это слабое пятнышко света в синеватой бездне ночного неба, и в его центре на фотографиях видны две звездочки 16-й величины, т. е. в 10000 раз более слабые, чем звезды, едва видимые невооруженным глазом в темную, безлунную ночь.

От обычных туманных пятен, десятками тысяч видимых на небе, Крабовидную туманность отличают две особенности. Во-первых, сравнение фотографий ее, сделанных с промежутком времени в 30 лет, позволило в 1942 г. подтвердить обнаруженный ранее факт: туманность заметно расширяется во все стороны от своего центра, занятого двумя звездочками. Во-вторых, спектр туманности необычен тем, что в нем на фоне яркого непрерывного спектра видны широкие и раздвоенные яркие линии химических элементов, среди которых водорода, не в пример другим газовым туманностям, очень мало. Вид спектральных линий показывает, что туманность расширяется со скоростью 1300 км/с, т. е. раз в сто большей, чем у других газовых туманностей, также обнаруживающих расширение.

Сопоставляя видимую угловую скорость расширения туманности с его линейной скоростью, определенной по спектру, мы узнаем расстояние до туманности (5000 световых лет), а отсюда и светимость двух звездочек в ее центре (она та же, что у Солнца). Туманность огромна, свет от одного ее края до другого идет 6 лет, тогда как диаметр орбиты Плутона в Солнечной системе он пересекает за 11 часов.

Зная скорость видимого, углового расширения туманности, можно подсчитать, когда же все ее вещество было сосредоточено в одном месте — там, в центре, где видны две звездочки. И что же оказывается: это было около 800—900 лет назад, т. е. примерно в то время, когда китайские летописцы видели вблизи этого же места свою звезду-гостью!

Может ли это быть простым совпадением?! Может ли быть, чтобы такая исключительная туманность случайно возникла в то время и в том месте, где сияла исключительно новая звезда?

Да, после вспышки эта звезда оставила вместо себя Крабовидную туманность. Для создания такой колоссальной туманности должна была произойти катастрофа, по своей грандиозности далеко превышающая вспышки обычных новых звезд.

Сверхновая, сверхзвезда — из чего ты возникла и во что ты превращаешься, когда угасаешь? — задаемся вопросом мы, но он безответен... Если таким блеском могут засверкать солнца, подобные нашему, или если в звезды, подобные Солнцу, превращается сверхновая звезда, бывшая раньше чем-то другим, то увидеть их пока что безнадежно, — другие звездные системы, в которых также наблюдаются вспышки сверхновых звезд, слишком далеки от нас, чтобы можно было обнаружить в них звезду типа Солнца. Солнце, если бы оно находилось даже в ближайшей к нам звездной системе, светилось бы в несколько сотен раз слабее, чем самые слабые звезды, различимые в ней в настоящее время.

Надо, чтобы сверхновая вспыхнула к нам поближе, в нашей Галактике. К сожалению, за то время, как астрономы стали этим интересоваться, ни одного такого случая не было. Так как «звезда-гостья» 1054 г. была причиной возникновения Крабовидной туманности и, следовательно, находилась на том же расстоянии от нас, то получается, что ее блеск был такой же, как у сверхновых звезд. Это была «наша собственная», «домашняя» сверхновая звезда. Крабовидная туманность особенно сильно излучает красные лучи, обязанные некоторым линиям азота. Это внушило мысль поискать подтверждения тому, что яркая новая звезда, наблюдавшаяся в 1604 г. в созвездии Змеедержца, тоже была сверхновой. Окрестности этого места в 1943 г. сфотографировали на пластинках, чувствительных к красным лучам, и на снимке обнаружили невидимую ранее слабую расширяющуюся туманность. Спектр ее оказался похожим на спектр Крабовидной туманности, и центр ее совпал с местом вспышки новой звезды Кеплера. В центре туманности нет звезд ярче 18½ звездной величины.

Новая звезда, бывшая ярче Венеры и наблюдавшаяся даже днем в 1572 г. в созвездии Кассиопеи, была тоже сверхновой звездой, вспыхнувшей в нашей Галактике и на ее месте тоже найдена расширяющаяся туманность. Все туманности, появляющиеся в результате вспышек сверхновых звезд, являются источниками мощного радиоизлучения, в особенности Крабовидная туманность. Это излучение создается тем, что магнитное поле, существующее в них, тормозит движение очень быстро движущихся электронов. Таких электронов, носящихся со скоростью, близкой к скорости света, в этих туманностях при взрыве сверхновой возникает очень много.

Такое излучение называется синхротронным и им же обусловлен непрерывный спектр Крабовидной туманности. Его излучает аморфная масса этой туманности, тогда как прожилки в ней дают газовое излучение в ярких линиях спектра. Эти прожилки пронизывают аморфную массу туманности, масса которой примерно равна массе Солнца, т. е. в 104 раз больше чем у оболочек, выброшенных обычными новыми.

Сильное радиоизлучение — характерный признак расширяющихся оболочек, выброшенных сверхновыми звездами. По этому признаку найден еще ряд таких оболочек сверхновых звезд, вспышки которых произошли слишком давно, или же по другим причинам не были замечены. Из них наиболее замечательна туманность Кассиопея А. Она, по-видимому, ближе к нам, чем остальные, так как является самым мощным из всех источников радиоизлучения при их наблюдении с Земли.

Существование сверхновых звезд вообще было выяснено раньше, чем за них в нашей звездной системе в сороковых годах были признаны звезды, вспыхивавшие в 1054, 1572 и 1604 гг. и считавшиеся сначала обычными новыми. Впервые сверхновыми назвали звезды, вспыхивавшие не в нашей Галактике, а в других звездных системах. По фотографиям еще в двадцатых годах были обнаружены вспышки звезд в далеких звездных системах, по размеру и по численности в них звезд сравнимых с нашей Галактикой.

В других, близких галактиках наблюдались вспышки новых звезд, и совершенно такие же, какие описаны в предыдущем разделе. Например, в спиральной галактике M 31 ежегодно вспыхивает около 30 новых звезд. В максимуме блеска они ярче всех остальных звезд галактики. Сверхновые же звезды, вспыхивающие несравненно реже, в максимуме блеска еще в десятки тысяч раз ярче. Их светимость в течение нескольких дней эквивалентна излучению нескольких миллиардов Солнц. Иногда это излучение превосходит излучение всей той звездной системы, в которой звезда вспыхнула. Как ни казалось это явление невероятным из-за мощности вспышки, а пришлось его реальность признать: с фактами, как известно, не спорят. Перед этим явлением совершенно стушевываются грандиозные катастрофы в обычных новых звездах.

Такие явления, более невероятные, чем сказки 1001 ночи, вскрывает перед нами наука!

Неудачно названные сверхновыми звезды вспыхивают крайне редко, в среднем в одной галактике, состоящей из миллиардов солнц, бывает одна такая вспышка за 300—400 лет, но в больших галактиках они бывают в несколько раз чаще, чем в маленьких. Это установил Цвикки, еще в тридцатых годах начавший систематически подстерегать такие вспышки. С 1961 г. по его предложению началась международная «служба сверхновых звезд», в которой участвуют 11 стран, в том числе СССР. В результате к 1980 г. было открыто около пятисот вспышек сверхновых, — больше, чем в нашей Галактике было открыто вспышек обычных новых звезд. И это в условиях, когда сверхновые звезды в максимуме не ярче 13-й звездной величины, а открываемые новые обычно намного ярче.

Ввиду большой удаленности и слабости видимого света даже в максимуме блеска изучить подробно сверхновые звезды других галактик тоже трудно. Все же удалось получить много важных сведений. Будучи сопоставлены с данными о радиоизлучающих расширяющихся туманностях (выброшенных сверхновыми нашей Галактики еще до изобретения телескопа), эти сведения подводят нас к изучению рассматриваемых явлений в целом.

Минковский, изучивший кривые блеска и спектры сверхновых при помощи 5-метрового телескопа установил существование двух типов сверхновых, различающихся кривыми блеска, спектрами и их изменениями. Спектры сверхновых I типа не содержат явных линий и долго не были расшифрованы. Спектры сверхновых II типа сходны со спектрами обычных новых и меняются сходным образом, только яркие полосы в них шире и говорят о выбросе газов со скоростями в несколько тысяч километров в секунду. Сверхновые нашей Галактики в Тельце, Кассиопее и Змеедержце были, по-видимому, сверхновыми I типа. Они немного ярче сверхновых II типа, вспыхивают гораздо реже, но зато в любой части звездных систем, тогда как более частые сверхновые II типа вспыхивают только вблизи плоского слоя тех галактик, у которых такой слой есть. Поскольку звездное население плоских слоев галактик отличается от населения сферической компоненты их, звезды, вспыхивающие как сверхновые I и II типа, различны. Недавно Цвикки пришел к выводу, что существует не два, а пожалуй, даже пять типов сверхновых звезд, что еще больше осложняет проблему.

При вспышке сверхновой звезды выделяется чудовищная энергия порядка 1050 эрг или больше.

В 1971 г. впервые было обнаружено теоретически давно ожидавшееся радиоизлучение при вспышке сверхновой звезды. Со времени изобретения телескопа ни одна вспышка сверхновой звезды не наблюдалась в нашей звездной системе — Галактике. Мы наблюдаем их пока оптически только в других неимоверно далеких звездных системах, столь далеких, что даже в мощнейший телескоп звезду, подобную нашему Солнцу, в них нельзя было бы увидеть. Радиопоток в 1971 г. удалось обнаружить от замеченной перед этим сверхновой звезды в спиральной звездной системе, обозначаемой M 101. Свет от нее идет к нам несколько миллионов лет, и в ней звезд, даже в тысячу раз более ярких, чем Солнце, с такого расстояния видеть невозможно. Однако сверхновая звезда вблизи ее максимума блеска была видна на фотографиях, полученных мощным телескопом. Радиопоток от нее на длине волны 21 см составил около 10-28 Вт/м²·Гц. Излучение это, по-видимому, нетепловое.

Цвикки предполагал, что освобождение энергии в виде тепла и света, наблюдаемое при вспышке сверхновой звезды, нельзя объяснить на основе обычно принимаемых источников звездной энергии. Он допускал, что в данном случае энергия освобождается при превращении звезды, состоящей в основном из атомных ядер, в спавшуюся звезду, состоящую из нейтронов. Когда весь водород превратился в гелий, у звезд вполне определенной массы вследствие чрезмерной плотности и температуры происходит, так сказать, втискивание свободных электронов в ядра атомов под действием высокого давления. Электроны, втискиваясь в ядра, нейтрализуют их заряд и превращают их в нейтроны. Нейтроны, обладая размерами атомных ядер, но не имея электрического заряда, препятствующего их сближению, могут быть сближены гораздо больше, чем электрически заряженные ядра атомов. Внешнее давление сжимает звезду с большой скоростью, и сразу же бурно освобождается энергия тяготения. Избыток излучения в недрах звезды срывает в пространство ее внешние слои, а остаток звезды спадает к центру, как карточный домик, и утрамбовывается до плотности нейтронов (порядка 1014 г/см³). Диаметр звезды, по мнению Цвикки, уменьшается до 10 км!

Такая звезда по величине была бы подстать астероидам. Наперсток с нейтронами весил бы сто миллионов тонн. Вся масса Земли, превращенная в нейтроны, поместилась бы внутри шара диаметром полтораста метров. Отсюда уже недалеко и до узелка, в котором была заключена вся земная тяжесть и который пытался поднять былинный богатырь Святогор.

Согласно расчетам нейтронная звезда должна была бы излучать мощный поток рентгеновских лучей, по которому такую крошку только и можно было бы обнаружить. В середине шестидесятых годов на небе впервые было обнаружено несколько самых мощных источников рентгеновских лучей. Один из них совпал с упоминавшейся выше туманностью Кассиопея A, а другой — с Крабовидной туманностью. Но рентгеновское излучение внутренних областей туманностей, оставленных сверхновыми звездами, относится к самим туманностям и, по-видимому, также имеет синхротронную природу.

«Оставим все это на суд будущего...» — так писал я в шестом издании этой книги. Но уже вскоре открытие радиопульсаров, из которых один оказался внутри Крабовидной туманности («по совместительству» он является также оптическим пульсаром и, наконец, рентгенопульсаром), блестяще оправдало предсказание моего покойного друга Фрица Цвикки. Нейтронные звезды, а затем и так называемые «черные дыры» оказались реальностью.

Предыдущая страница К оглавлению Следующая страница
«Кабинетъ» — История астрономии. Все права на тексты книг принадлежат их авторам!
При копировании материалов проекта обязательно ставить ссылку