Материалы по истории астрономии

На правах рекламы:

http://evermedic.ru/ стоимость медицинской книжки цены на оформление медкнижек.

Диффузные газовые туманности

Газовые диффузные туманности, обычно весьма клочковатые, сильно концентрируются к галактическому экватору. Они бывают самых разнообразных размеров и неопределенных очертаний. Из них наиболее известны туманности Ориона (рис. 172 и на вклейке), Лагуна, Омега, Трехраздельная, Пеликан, Северная Америка. Но существуют и такие более ясно очерченные объекты с усилением яркости к периферии (периферические туманности), как Розетка. В ее середине находится рассеянное звездное скопление, состоящее из горячих звезд классов О и В. Существуют еще немногочисленные волокнистые туманности. Самая известная из них NGC 6960 и 6992, или Рыбачья сеть, в созвездии Лебедя, является, однако, как полагают, остатком сверхновой звезды (рис. 173).

Фотографии, сделанные через красный светофильтр, подавляют свечение ночного неба и позволяют выявить в лучах красной водородной линии очень слабые туманности. Много их открыл на Крымской обсерватории Г.А. Шайн со своими сотрудниками. Он, а также В.Г. Фесенков и Д.А. Рожковский издали прекрасные атласы фотографий этих объектов, показывающие их тонкие детали, в которых можно видеть явные признаки турбулентных движений.

В туманности Ориона такие движения проявляются и в различии лучевых скоростей от места к месту.

Насчитывают около 300 диффузных газовых туманностей, но их число и размеры в каталогах весьма произвольны в силу того, что часто встречаются комплексы туманностей и каждый такой комплекс можно считать одной туманностью; с другой стороны, можно считать самостоятельной туманностью каждую деталь сильно клочковатой, затейливой туманности.

Под туманностью Ориона, самой яркой, понимают обычно сияние, около одного градуса в поперечнике, окутывающее четыре звезды класса О, называемые «трапецией Ориона». Но слабые туманные области простираются и много дальше и окутывают почти все громадное созвездие Ориона.

Обширные области свечения с неопределенными границами часто встречаются в полосе Млечного Пути и называются водородными полями или областями H II, так как в них светится в основном ионизованный водород в процессе рекомбинации, как и в планетарных туманностях.

Хаббл давно доказал, что источником свечения газовых туманностей является облучение их ультрафиолетовым светом горячих звезд классов O и B0—В1, но не более холодных. Так как температура этих звезд ниже, чем температура большинства ядер планетарных туманностей, то в них ионизация и возбуждение ниже: яркие ультрафиолетовые линии λλ 3727— 3729 кислорода сильны, а зеленые линии кислорода слабы.

Звезда (или ряд звезд), возбуждающая свечение, бывает и внутри туманности, и на ее краю, и даже вне ее, поблизости. Поэтому, а также иногда вследствие удаленности от нас, установить, какая звезда вызывает свечение туманности, не удается. Такие звезды не найдены для ряда волокнистых туманностей, свечение которых имеет, может быть, даже другое происхождение.

Свечение диффузных туманностей и водородных полей так слабо, что получить их спектры удается только при помощи особо светосильных небулярных спектрографов. Лучевые скорости их того же порядка, что и у звезд, их освещающих, но возможно, что взаимная связь туманности со звездой временная и случайная, а не генетическая, как у планетарных туманностей и их ядер, которые имеют большие пекулярные скорости, доходящие до 200 км/с.

У диффузных туманностей скорости меньше и в основном свидетельствуют об их участии во вращении вокруг центра Галактики в плоскости Млечного Пути по орбитам, близким к круговым, тогда как планетарные туманности имеют, вероятно, более вытянутые орбиты и большие хаотические скорости.

В своей совокупности диффузные газовые туманности и водородные поля образуют клочковатый слой газа, толщиной около 200 парсек (около 600 световых лет), в плоскости галактического экватора. Этот слой совпадает со слоем горячих гигантов и без них газовые облака не светились бы.

Горячий гигант внутри облака газа вызывает его свечение только в соответствии с размером обусловленной им зоны Стремгрена (зоны полной ионизации водорода). Вне ее газ невидим, и, вероятно, большинство светлых туманностей окружено зонами невидимого нейтрального водорода. По аналогии с диффузными туманностями, видимыми в ближайших к нам спиральных галактиках поздних типов и в нашей Галактике, считают, что они располагаются вдоль спиральных ветвей. Поэтому локализацию спиральных ветвей нашей Галактики стараются установить прежде всего по расположению в ней горячих гигантов и диффузных туманностей. Но часто забывают, что эти данные не независимы, так как за расстояние до туманностей принимают расстояние до звезд, возбуждающих их свечение и иногда, может быть, неверно признанных за таковые. Другого способа определения расстояний до диффузных туманностей нет.

Расстояние до горячих звезд оценивается довольно приблизительно из сравнения принятой для них абсолютной звездной величины с видимой звездной величиной. Абсолютные величины установлены еще не очень уверенно. Требуется также учесть влияние межзвездного поглощения света вблизи галактической плоскости и на большом протяжении. Этот учет еще неточен. Некоторое различие в пространственном распределении горячих гигантов и диффузных туманностей состоит в том, что иногда в местах большого скопления гигантов туманностей нет.

Массы диффузных туманностей определяют, анализируя «меру эмиссии». Так называют произведение n2e×l, где ne — электронная концентрация, а l — предполагаемая толщина туманности в парсеках. Следовательно, эта величина, пропорциональная поверхностной яркости, характеризует число атомов водорода на луче зрения в столбике сечением 1 см? с длиной, равной толщине туманности.

Определив электронную температуру или приняв ее за 8000°, по мере эмиссии находят nе, подставляя принятое значение l. Можно обнаружить свечение с мерой эмиссии, равной всего лишь нескольким десяткам. Плотности диффузных туманностей обычно оказываются в пределах от десятка до сотни электронов (протонов) на 1 см³, а в центре туманности Ориона плотность доходит до 1000 и больше, но в общем плотности их ниже, чем в планетарных туманностях. В водородных полях плотность падает до ne = 1.

Умножая массу протона на nе и на объем туманности (иногда условный), получаем массу последней. Первые такие определения были сделаны в лаборатории автора О.Д. Докучаевой для туманности Ориона и Д.П. Гук для туманности Омега. Получились массы 166 и 515 масс Солнца соответственно. Позднее Г.А. Шайн, В.Ф. Газе и другие нашли, что массы отдельных туманностей колеблются от 0,1 до сотен масс Солнца, а массы комплексов составляют тысячи масс Солнца. Наименьшие диффузные туманности близки по массе к планетарным. Что касается размеров, то они у диффузных туманностей колеблются от долей парсека до десятков парсек.

В газовых туманностях иногда наблюдается и непрерывный спектр той или иной интенсивности. Иногда он, несомненно, принадлежит пыли, особенно когда на фоне туманности видны темные прожилки, как в Трехраздельной туманности. В туманности Ориона много пыли; это видно из того, что погруженные в нее горячие звезды, как говорят, сильно покраснены. При такой плотности пыли на протяжении парсека она производила бы поглощение в 10 звездных величин!

В одних туманностях пыли больше, в других меньше, иногда одна часть туманности пылевая, другая газовая. Отсутствие следов газового спектра во многих пылевых туманностях не означает еще, что в них газа нет. Освещающие их звезды B1 и более поздних классов не могут вызвать нужную ионизацию и свечение газа, но все же его в пылевых туманностях мало, так как согласно расчетам даже при плотности ne = 10—15 звезды B2—BЗ вызвали бы заметное свечение газа. Но неясно обратное: почему нет чисто отражательных туманностей, освещенных звездами классов О и ВО?

Во многих газовых туманностях, как показали наблюдения и расчеты Г.А. Шайна и С.Б. Пикельнера, непрерывный спектр обусловлен не пылью, а двухквантовыми переходами, как в планетарных туманностях, тогда как раньше этот спектр приписывали пыли. В ярких газовых туманностях, может быть, и есть пыль, но она светится отраженным светом так слабо, что ее непрерывный спектр не заметен на фоне яркого спектра, вызванного двухквантовыми переходами в газе.

Большие массы диффузных туманностей посылают весьма заметное тепловое радиоизлучение.

Много исследований посвящается сейчас газодинамическому исследованию судьбы диффузных туманностей. Тяготение может, конечно, удерживать от рассеяния большую массу холодного газа. Но в Галактике все находится в движении.

Недостаточное знание распределения плотностей и других условий в реальных туманностях, их разнообразие, различия в постановке и решении теоретической задачи не привели пока к однозначным выводам о том, рассеиваются ли диффузные туманности, либо в них происходит конденсация. Наблюдения также пока еще не могут ответить на этот вопрос. Согласно некоторым работам холодный газ может конденсироваться в звезды и в пылинки, если имеются ядра конденсации в виде сложных тяжелых молекул или иные. Горячий, ионизованный газ конденсироваться никак не может.

Зародыши пылинок, сталкиваясь друг с другом и с атомами холодного газа, могут в одних случаях сливаться и расти, в других случаях испаряться. Это влияет и на плотность окружающего газа. Получается очень сложная картина, в которой большое внимание привлекают вторжения темной материи в светлые области ионизованного газа. При этом свечение по периферии темной массы усилено, образуя светлый, резкий ободок вдоль ее края, всегда обращенного к звезде. Особенно узкие клинья темных вторжений получили за свой вид название «слоновые хоботы».

Плотность ионизованного газа в светлом ободке сильно повышена, а темная область содержит холодный газ, перемешанный с уплотненной пылью. Теоретическая трактовка описанного явления опирается на то, что когда горячая звезда облучает холодный газ, то ионизация в нем распространяется быстрее, чем волна давления нагреваемого газа. Светлый ободок получается, когда ионизационный фронт подходит к плотному облаку газа со стороны горячей звезды. Если на пути фронта встречается область очень большой плотности, она остается неионизованной, и фронт огибает эту флуктуацию. Это и приводит к включениям областей H I в области H II в виде «слоновых хоботов». Сжимание холодного газа в области «слонового хобота» давлением газа зоны H II может привести к полной изоляции газового сгустка и дать начало возникновению глобулы. Сжатие глобул горячим газом и образование в них так называемой кумулятивной сходящейся ударной волны облегчают их гравитационную конденсацию.

Особый случай представляют собой волокнистые туманности округлых очертаний в целом, вроде Рыбачьей сети в созвездии Лебедя. Но они очень немногочисленны и, по-видимому, являются результатом вспышек сверхновых звезд. О них мы уже рассказывали. Но волокнистость часто проявляется в туманностях, вытянутых обычно вдоль Млечного Пути. Эта вытянутость не может объясняться действием различия в скорости обращения туманностей около центра Галактики на разных от него расстояниях. По-видимому, вытянутость туманностей обусловлена характером магнитного поля Галактики, силовые линии которого лежат в ее плоскости и вдоль спиральных ветвей.

Г.А. Шайн нашел подтверждение этому предположению, сопоставляя направления вытянутостей туманностей с данными о поляризации света звезд. Магнитное поле допускает движение газа вдоль силовых линий и тормозит движение поперек них. При расширении туманности она и растекается вдоль линий поля, вдоль спиральной ветви. Сдерживающее действие магнитного поля, сгущение силовых линий в одних местах и их разрежение в других местах, по-видимому, и обусловливают волокнистую структуру больших туманностей, вытянутых вдоль Млечного Пути. Ионизованный проводящий газ удерживает в себе силовые линии поля и перемещается вместе с ними. При сильных хаотических движениях силовые линии вместе с потоками газа запутываются, напряжение поля усиливается, а вместе с ним уплотняются газовые потоки, что, вероятно, и создает волокнистую структуру в обширных газовых туманностях, как, например» в созвездии Лебедя.

Предыдущая страница К оглавлению Следующая страница
«Кабинетъ» — История астрономии. Все права на тексты книг принадлежат их авторам!
При копировании материалов проекта обязательно ставить ссылку