Материалы по истории астрономии

Верстовые столбы и структура нашей Галактики

В картине осеннего безлунного неба особенно хорошо выделяется бледная лента Млечного Пути, издревле замеченная человеком. Такое название она получила потому, что напоминает бледную просохшую полосу пролитого молока. Индейцы думали, что по ней, как по дороге, души людей идут на небо. Вот какое впечатление она производила на меня в юности:

МЛЕЧНЫЙ ПУТЬ

Я люблю порой осенней
Видеть Млечный Путь.
Ночью глубже, вдохновенней,
Легче дышит грудь.
Там, в его извивах белых
Блесток длинный ряд.
Переливом волн несмелых
Светляки горят.
Перепутались в гирлянды,
Здесь горят, там — нет,
Блещут ярче чем брильянты, —
Словно сказки бред.
Я люблю в его извивах
Мыслью отдохнуть —
Мне так дорог в переливах
Блесток Млечный Путь.

(Стихи автора)

Нас интересует не только звездное население того дома, в котором мы живем. Нас интересует и архитектура этого дома и его размеры; интересует, как его обитатели расселены, где жилищная теснота звезд, какие жилплощади не заняты жильцами. И вот, глядя в звездную даль, в усыпанное звездами небо, мы должны это установить. От наивной древней картины мира, принимавшей за действительность кажущуюся одинаковую удаленность всех звезд и располагавшую их всех на поверхности хрустальной сферы, мы должны перейти к познанию истинной пространственной структуры грандиозной звездной системы.

В познании устройства Вселенной научное изучение Млечного Пути и размышления над его структурой играли величайшую роль.

Первое, что мы стремимся установить, — это общие контуры, общие очертания нашей звездной системы, хотя бы в самых грубых чертах. Это удалось сделать еще до того, как стало известно расстояние до ближайшей звезды. На первый порах совершенно правильно приняли для этой цели, что светимость всех звезд одинакова и что различие в их видимом блеске зависит исключительно от их расстояния до нас. Мы знаем теперь, что в действительности светимости звезд различаются прямо-таки чудовищно, но мы знаем также и то, что очень ярких звезд очень мало и что из очень слабых звезд видны лишь те, которые к нам совсем близки. Поэтому большинство видимых звезд — это средние звезды, и к ним в среднем наше предположение вполне применимо.

Допустим, вы стоите на высоком холме над равниной, на которой разбросаны купами старые и молодые деревья. Они различны по высоте, высоту каждого из них вы не знаете. Но, глядя на них с холма, вы по их кажущейся величине довольно правильно можете судить о расстоянии до каждой купы деревьев. Вы — разведчик Вселенной, холм — наша Солнечная система, деревья — это звезды. Применяйте к ним такой глазомер и изучайте местность. Такой путь изучения звездной Вселенной предложил Вильям Гершель. До него ограничивались наблюдением положения звезд на небе и изучением поверхности Луны и планет, а также увлекались изучением движения членов Солнечной системы.

Биография Гершеля стоит того, чтобы о ней сказать несколько слов. Музыкант, служивший вначале в Ганноверской армии, он переселился в Англию и там, урывая время от уроков музыки, посвящал вечера наблюдению неба. Открыв планету Уран, он приобрел большую известность, но все еще не имел средств на покупку большого телескопа и стал его делать сам. В этом он так преуспел, что впоследствии соорудил себе телескопы-рефлекторы, достигавшие 120 см в диаметре и долго бывшие наибольшими в мире. С ними он сделал множество открытий.

Для выяснения контуров Вселенной Гершель стал подсчитывать число звезд разного блеска, видимых в поле зрения его телескопа в различных участках неба, — в Млечном Пути и в стороне от него. Он обнаружил, что чем слабее звезды, тем быстрее возрастает их число по мере приближения к Млечному Пути. Сам же Млечный Путь, как открыл еще Галилей, состоит из бесчисленного множества слабых звезд, сливающихся в сплошную сияющую массу, которая как кольцо опоясывает все небо.

Из этих подсчетов Гершелю стало ясно, что дальше всего наша звездная система тянется во все стороны от нас по направлению к Млечному Пути в плоскости, проходящей через его среднюю линию. Так как Млечный Путь опоясывает все небо, деля его почти пополам, то, очевидно, наша Солнечная система находится вблизи этой плоскости (вблизи галактической плоскости, как ее называют).

Однако Гершель принимал, что он своим гигантским телескопом проник до границ нашей звездной системы, состоящей из звезд, расположенных в пространстве будто бы равномерно.

Основатель Пулковской обсерватории В.Я. Струве в 1847 г. пересмотрел расчеты Гершеля и, изучив распределение звезд, доказал ошибочность подобных выводов. Струве установил, что в пространстве звезды расположены не равномерно, а сгущаются к плоскости Млечного Пути, что наше Солнце вовсе не занимает центральное положение в этой звездной системе и что наибольшие телескопы Гершеля далеко еще не достигли ее границ, а потому и о форме ее говорить преждевременно. Гершель считал, что он как бы сидит со своим телескопом в центре правильно расположенной рощи, из которой обозревает все ее опушки, а Струве доказал, что Гершель сидел где-то в огромном лесу, полном чащ и разрежений, откуда опушки леса далеко еще не видны.

Чем дальше от плоскости Млечного Пути, тем меньше там видно слабых звезд и тем на меньшее расстояние в этих направлениях тянется звездная система. В общем наша звездная система, названная Галактикой, занимает пространство, напоминающее линзу или чечевицу. Она сплющена, толще всего в середине и утончается к краям. Если бы мы могли видеть ее «сверху» или «снизу», она имела бы, грубо говоря, вид круга (не кольца!). «Сбоку» лее она выглядела бы как веретено. Но каковы размеры этого «веретена»? Однородно ли расположение звезд в нем?

Ответ дает уже простое рассматривание Млечного Пути, который весь состоит как бы из нагромождения звездных облаков. Одни облака ярче, в них больше звезд (как, например, в созвездиях Стрельца и Лебедя), другие же беднее звездами.

Видимая клочковатость Млечного Пути создается также и неравномерным распределением облаков космической пыли, темными туманностями разной плотности, поглощающими свет звезд, находящихся за ними. Но и с учетом этого наша звездная Вселенная неоднородна. Галактика состоит из звездных облаков, Солнечная система находится в одном из них, называемом «Местной системой». Самые мощные облака звезд находятся в направлении созвездия Стрельца; там Млечный Путь наиболее ярок. Он наименее ярок в противоположной части неба.

Из этого нетрудно вывести заключение, что Солнечная система не находится в центре Галактики, который от нас виден в направлении созвездия Стрельца. Значит, Млечный Путь — это картина, видимая нами, находящимися внутри Галактики, вблизи ее плоскости, но вдали от ее центра.

Для получения более правильной картины мы должны учитывать распределение звезд по светимости и поглощение света в пространстве, которое, как мы видели, значительно и, вдобавок, различно по разным направлениям.

Для изучения изменения звездной плотности с расстоянием от нас по различным направлениям подсчитываем звезды на фотографиях различных участков неба. При этом надо еще учесть, что на каждой фотографии круглая площадка на небе соответствует в пространстве объему, заключенному внутри конуса с вершиной в Солнечной системе, если хотите — в глазу наблюдателя, жителя этой системы.

Учет всего перечисленного делает изучение строения Вселенной довольно сложным и трудоемким делом. Для учета поглощения света надо определить спектральные классы и цвет множества звезд на каждой фотографии. Нормальные цвета звезд каждого спектрального класса известны из изучения близких к нам звезд, на цвет которых межзвездное поглощение света не влияет. Свет же далеких звезд из-за поглощения становится тем более красным, чем дальше от нас и чем ближе к плоскости Млечного Пути они расположены. Ослабление видимого блеска звезды пропорционально ее покраснению. По степени покраснения оценивают величину ослабления видимого блеска каждой звезды, взятой для подсчетов. Необходимость фотографирования спектров звезд еще больше ограничивает исследования лишь более яркими звездами и позволяет изучить их распределение лишь до расстояний в несколько сотен световых лет. Так, мы изучаем лишь ближайшие окрестности Солнца, лишь внутреннюю часть звездного облака — «Местной системы», внутри которой мы находимся.

Для изучения, так сказать, костяка всей нашей звездной системы, для определения ее формы, размеров и структуры мы прибегаем к другим способам. Как было бы легко составить план равнинного редколесья, если бы на нем по всем направлениям встречались деревья-гиганты с надписью, на каком они расстоянии от нас находятся! Во Вселенной мы нашли звезды-гиганты, имеющие вполне определенную, известную нам светимость и видимые нам благодаря своей большой светимости на огромном расстоянии. Среди них первое место занимают переменные звезды — цефеиды, которые можно назвать маяками Вселенной. Их светимость возрастает, как мы знаем, с увеличением периода изменения их блеска. Стоит определить период изменения блеска цефеиды, и мы по рис. 157 сразу можем сказать, каковы ее абсолютная величина и светимость.

Из наблюдений легко можно определить период изменения блеска цефеиды и ее видимый блеск. Сравнение же видимого блеска с истинным, т. е. со светимостью i, сразу же нам дает расстояние до данной цефеиды, так как в прозрачном пространстве видимый блеск меняется обратно пропорционально квадрату расстояния. С учетом поглощения света в пространстве дело обстоит несколько сложнее. Если пользоваться абсолютной и видимой звездной величиной звезды, то расстояние в прозрачном пространстве, как мы знаем, можно вычислить по простой формуле. По этой формуле находится логарифм расстояния в световых годах:

Кроме цефеид — маяков Вселенной, верстовыми столбами в Галактике, или указателями расстояний, мы можем считать все звезды с большой и известной светимостью: долгопериодические переменные звезды (в максимуме блеска) и белые звезды с известным спектральным классом. Для первых светимость, как и у цефеид, известным нам образом зависит от периода изменения их блеска, для вторых мы можем ее отсчитать по диаграмме светимость — спектр.

Зависимость между периодом и светимостью у цефеид и у так называемых долгопериодических переменных звезд, а также диаграмма светимость — спектр построены по тем сравнительно близким к нам звездам этих типов, для которых светимость известна на основании надежно определенных расстояний. Для близких звезд расстояния можно определить непосредственно, применяя классический способ измерения тригонометрического параллакса. Для тех же звезд, которые расположены от нас так далеко, что их параллакс меньше, чем ошибки его измерения, этот способ неприменим, и вот тогда-то мы пользуемся способом, который только что был описан.

Все сказанное мы можем применить (и это для нас особенно ценно) к рассеянным и к шаровым звездным скоплениям, расстояния до которых очень велики в сравнении с их размерами. Тогда, если в такой далекой звездной системе есть среди ее членов цефеиды или красные долгопериодические переменные или белые (несомненно, яркие) звезды, то мы можем считать, что расстояние до системы практически равно расстоянию от нас до этих ее членов, а их расстояния мы определять умеем. Лежит ли подобная звезда у переднего края системы или в дальнем ее конце, при большом расстоянии это уже не так важно. Если ваш приятель с группой товарищей во время загородной прогулки ушел далеко вперед, а вы видите, что отстали от них на 2—3 км, то вам безразлично, что эта группа растянулась по дороге на 10—20 м, и вы не будете особенно интересоваться тем, где ваш приятель — в голове или в хвосте группы. Вот в таком же положении бывают и астрономы, рассматривая далекую звездную систему.

В состав нашей Галактики, кроме отдельных звезд и звездных скоплений, входит еще диффузная материя в форме темных пылевых туманностей, общего слоя космической пыли, газовых диффузных и планетарных туманностей и общей массы газа. Последняя в основном является невидимым нейтральным водородом, обнаруживаемым по его радиоизлучению на длине волны 21 см. Расположение диффузной материи также нужно изучить. Как определяют расстояния до пылевых и газовых туманностей, пояснялось нами в главе 9.

Самыми далекими объектами нашей Галактики, как бы обрисовывающими главные черты ее строения и определяющими ее размеры, являются долгопериодические цефеиды, горячие звезды-гиганты, планетарные туманности, сгущения облаков нейтрального водорода и шаровые звездные скопления.

Для изучения движений населения нашей Галактики измеряются «собственные движения», т. е. видимые угловые перемещения (заметные на фотографиях лишь для ближайших звезд) и лучевые скорости очень далеких объектов. Для последней цели даже большой телескоп со спектрографом приходится иногда направлять точно на слабо видимый объект в течение многих часов или даже ночей. Скорости движения облаков нейтрального водорода определяют, изучая профили линии 21 см при помощи радиотелескопа. Тысячи накопленных во всем мире таких наблюдений исправляют с учетом различных влияний и подвергают затем столь же кропотливому изучению. Из этих материалов выясняются закономерности движений, масса нашей Галактики и распределение в ней плотности, создаваемой звездами, находящимися в единице объема.

Предыдущая страница К оглавлению Следующая страница

«Кабинетъ» — История астрономии. Все права на тексты книг принадлежат их авторам!
При копировании материалов проекта обязательно ставить ссылку