Материалы по истории астрономии

Рождение диффузной материи

Еще древние греки рисовали себе мир происшедшим из беспредельного хаоса. Эти представления о происхождении компактных мировых тел из разреженной и хаотической материи, обычно мыслимой как газ, бессознательно отражены и в идеях Гершеля о сгущении туманностей в звезды и в гипотезах Канта, Лапласа и других о рождении Солнечной системы из туманности, в теориях Джинса об образовании спиральных звездных систем.

Трудно отрешиться от подобных представлений потому, что сейчас едва ли можно себе сколько-нибудь отчетливо представить какой-либо другой процесс образования звезд, помимо сгущения разреженного вещества в плотные тела. Из различных форм вещества во Вселенной в настоящее время мы, кроме больших тел (звезд и планет), знаем лишь диффузный газ и метеоритную пыль.

Как естественное следствие представления о сгущении газа в звезды, со времен Гершеля диффузные туманности, такие, как туманность Ориона, рассматривались как остатки первичной туманности, как своего рода обрезки материи, из которой были скроены звезды. Более двух веков этот вопрос не пересматривался, но к настоящему времени накопилось множество фактов, которые позволили автору этой книги выступить в 1931 г. с гипотезой совершенно другого характера. Она вытекает сама собой из совокупности наблюдений.

Сущность дела состоит в том, что наблюдаемые сейчас диффузные туманности и межзвездный газ, а быть может, и межзвездную пыль следует рассматривать, по крайней мере в значительной своей части, как продукт деятельности звезд. Процесс образования масс диффузного газа происходит в настоящее время, можно сказать, на наших глазах. Он происходил и раньше и будет еще происходить долго в будущем.

Прежде всего укажем на то обстоятельство, что у многих планетарных туманностей обнаружено радиальное расширение со скоростью десятков километров в секунду. С космической точки зрения медленно, но неуклонно планетарные туманности, эти газовые скорлупки, окружающие свои звездные ядра, расширяются, как мыльные пузыри. Газовая оболочка, движущаяся со скоростью десятков километров в секунду и отстоящая от своей звезды на сотни и тысячи астрономических единиц, не может быть ею задержана. Расширение туманности, ее разрежение и растворение в межзвездном пространстве неизбежны. Рано или поздно планетарная туманность небольших размеров и четких очертаний расползется, превратится в межзвездный газ и утратит связь со своей звездой. Если масса планетарной туманности достаточно велика, то по прошествии некоторого времени, расширившись, она займет такое пространство, будучи еще в то же время достаточно плотной, что превратится в диффузную туманность. Диффузная туманность отличается от планетарной лишь своими большими размерами и неправильностью формы. Но при ничтожно малой вероятности совершенно симметричного расширения всех частей, имеющих разную плотность, правильная форма планетарной туманности с течением времени должна нарушаться все больше и больше.

Можно видеть на небе примеры туманностей типа переходного от планетарных к диффузным, и можно заметить, что в общем чем больше размеры планетарной туманности, тем больше приближается она к типу диффузной туманности.

Что планетарные туманности образованы за счет газов, выделенных когда-то самой звездой, сидящей внутри каждой из них, в этом нет никаких сомнений. Итак, за счет газов, выделенных когда-то звездами — ядрами планетарных туманностей, все время образуются разреженные межзвездные газы, а в некоторых случаях и диффузные туманности.

Уже через сто миллионов лет газы расширившейся планетарной туманности (считая время от начала ее возникновения) совершенно теряют связь с породившей их звездой и переходят в сферу действия других звезд. По оценке автора масса оболочки планетарной туманности составляет от 1/10 до 1/100 массы Солнца, и в нашей звездной системе — Галактике — в настоящее время содержится много тысяч таких туманностей. Допустив, что в Галактике всегда существовало только десять тысяч планетарных туманностей одновременно и что Галактика существует так же долго, как земная кора (а это наименьший возможный возраст Галактики), мы приходим к следующему заключению.

С тех пор как Галактика существует, звезды, образующие вокруг себя планетарные туманности, доставили в мировое пространство массу газов, по меньшей мере равную массе десяти миллионов солнц, — массу, весьма внушительную, а вероятно, в действительности она во много раз больше.

Кроме планетарных туманностей, непосредственно на наших глазах газы выбрасываются в мировое пространство новыми и сверхновыми звездами, о чем уже говорилось нами подробно. Даже если оставить в стороне мало еще изученные сверхновые звезды, выбрасывающие большие массы газа, то и тогда масса, даваемая обычными новыми звездами, достаточно внушительна.

Каждая из них при вспышке выбрасывает массу в 10-4—10-5 масс Солнца, и таких вспышек в нашей Галактике ежегодно происходят десятки. Если за время существования земной коры новые звезды в Галактике всегда вспыхивали так же часто, как сейчас, то за это время они извергли в межзвездное пространство столько же газа, сколько его было поставлено планетарными туманностями. Еще столько же дают, по-видимому, и вспышки сверхновых звезд.

Звезда Вольфа — Райе теряет в год около 10-5 массы Солнца путем непрерывного выбрасывания атомов со своей поверхности. По-видимому, такой процесс длится у нее около десяти тысяч лет. Два разных способа оценки числа звезд Вольфа — Райе в Галактике согласно приводят к числу в четыреста тысяч. Если такая пропорция существовала в Галактике все время с тех пор, как родилась Земля, то, значит, за это время межзвездное пространство приобрело массу газа, из которой можно было бы сделать три миллиарда солнц.

Если звезды Вольфа — Райе способны так энергично выбрасывать атомы даже не десять тысяч лет, а только десять лет, то и тогда их роль как поставщиков газа в пространство не уступала бы роли планетарных туманностей и новых звезд. В какой-то мере даже наше Солнце и все звезды теряют вещество со своей поверхности, заполняя им окружающее пространство.

Если учесть еще, что, вероятно, все звезды, а не только указанные выше, поставляют в межзвездное пространство свой газ (путем выброса протуберанцев или иначе), то окажется, что масса газа, выброшенного звездами за время существования Галактики, может быть, даже превосходит наблюдаемую в ней теперь массу диффузной материи. А тогда нужно сделать вывод, что масса диффузной материи не только прибывает, но и убывает. Куда она может убывать? Очевидно, она снова конденсируется в более плотные тела — в звезды и т. п.

Итак, все перечисленные звезды, являющиеся источником разреженного газа, за время, несомненно меньшее, чем время существования Галактики, рассеяли в пространство массу газа, из которой можно было бы сделать по меньшей мере миллиарды солнц.

Различные способы оценки количества диффузной материи в Галактике (как в форме газа, так и в форме пыли) приводят к значениям, содержащимся между 108 и 1019 масс Солнца. Таким образом, газа, выброшенного звездами, совершенно достаточно, чтобы образовать все существующие газовые туманности и межзвездную газовую среду и даже пылевые туманности (светлые и темные). Изложенный выше вывод автора этой книги о большой космогонической роли диффузных туманностей и продолжающемся процессе их формирования в Галактике был отмечен Всесоюзным совещанием по звездной космогонии в мае 1952 г. в числе наиболее значительных достижений советской звездной космогонии.

К настоящему времени представление об огромности массы газа, выбрасываемой звездами, и о том, что она снова становится материалом, из которого конденсируются звезды, стало общепринятым. Конечно, возможно и необходимо, чтобы первые поколения звезд каждой галактики возникали из «первичного» газа, происшедшего не из звезд, а иным путем.

Не следует думать, что намеченный нами круговорот газа и звезд вызывает вечное повторение пройденного. Как и круговорот жизни на Земле, круговорот во Вселенной ведет к изменениям. Теперь на Земле растения и животные уже не те, какие, погибая, удобряли собой Землю миллионы лет назад. Излучение звезд сопровождается превращением кх водорода в гелий, а в их недрах, по-видимому, происходит возникновение тяжелых химических элементов. Поэтому химический состав звезд изменяется, и потому меняется состав выбрасываемых ими газов, из которых потом возникают другие звезды. Состав рождающихся сейчас звезд иной, чем он был у звезд, рождавшихся ранее, и не все вещество звезд распыляется в пространство. Количество газа в звездных системах постепенно убывает. Наблюдения показывают, что есть звезды, богатые водородом или металлами или же бедные ими. По-видимому, это звезды разных периодов образования, сгущавшиеся из газа, имевшего разный химический состав и не всегда, или по-разному «варившегося» в недрах звезд.

В противоположность этому академик В.А. Амбарцумян полагает, что туманности и горячие звезды возникают одновременно из какой-то сверхплотной формы вещества, что в основном туманности образуются не за счет выброса газа звездами, хотя такой выброс значительных масс он не отрицает.

Возникает вопрос, могли ли газы образовать межзвездную космическую пыль? По этому поводу только совсем недавно кое-что выяснилось. На основе выводов о процессе конденсации металлических паров на твердых телах некоторые ученые считают возможным конденсацию газовых молекул на частицах космической пыли благодаря разности температур этих частиц и межзвездного газа. Энергия столкновения атома с пылинкой быстро излучается в пространство или частично переходит во внутриатомную энергию, так что пылинка остается холодной. За миллиард лет масса частицы, которая вначале, может быть, чрезвычайно мала, достигнет 10-15 г, как показывают подсчеты, а это уже масса частиц темных туманностей.

Ядра конденсации ничтожно малых размеров могли возникнуть при разрушении таких тел, как ядра комет. Достаточно, чтобы ничтожная часть всей космической пыли имела такое происхождение, и это обеспечит дальнейший рост массы каждой пылинки.

Известный процент атомов с малыми скоростями может и непосредственно вступать в молекулярные соединения, а затем и в группы молекул, т. е. в зародыши пылинок.

Там, где выброшенные звездами газы собираются в облака и образуют таким образом диффузные туманности, они могут светиться, если есть достаточно горячая звезда, могущая возбудить их свечение. Когда в таких туманностях накопится достаточно многотвердых частиц, образуется темная пылевая туманность, светящаяся, если поблизости окажется достаточно яркая, хотя бы и не горячая звезда. Некоторые ученые развивали теорию роста метеоритных пылинок путем соединения одних из них с другими.

Предыдущая страница К оглавлению Следующая страница

«Кабинетъ» — История астрономии. Все права на тексты книг принадлежат их авторам!
При копировании материалов проекта обязательно ставить ссылку